skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Albash, Tameem"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study the tractability of classically simulating critical phenomena in the quench dynamics of one-dimensional transverse field Ising models (TFIMs) using highly truncated matrix product states (MPS). We focus on two paradigmatic examples: a dynamical quantum phase transition (DQPT) that occurs in nonintegrable long-range TFIMs, and the infinite-time correlation length of the integrable nearest-neighbor TFIM when quenched to the critical point, where the quantities of interest involve equal time one- and two- point correlation functions, which we associate with macroproperties. For the DQPT, we show that the order parameters can be efficiently simulated with heavy truncation of the MPS bond dimension. This can be used to reliably extract critical properties of the phase transition, including critical exponents, even when the full many-body state is not simulated with high fidelity. The long-time correlation length near the critical point is more sensitive to the full many-body state fidelity, and generally requires a large bond dimension MPS. Nonetheless, this can still be efficiently simulated with strongly truncated MPS because it can be extracted from the short-time behavior of the dynamics where entanglement is low. Our results provide illustrations of scenarios where accurate calculation of the full many-body state (microstate) is intractable due to the volume-law growth of entanglement, yet a precise specification of an exact microstate may not be required when simulating macroproperties that play a role in phases of matter of many-body systems. We also study the tractability of simulation using truncated MPS based on quantum chaos and equilibration in the models. We find a counterintuitive inverse relationship, whereby local expectation values are most easily approximated for chaotic systems whose exact many-body state is most intractable. 
    more » « less
  2. We build upon recent work on the use of machine-learning models to estimate Hamiltonian parameters using continuous weak measurement of qubits as input. We consider two settings for the training of our model: (1) supervised learning, where the weak-measurement training record can be labeled with known Hamiltonian parameters, and (2) unsupervised learning, where no labels are available. The first has the advantage of not requiring an explicit representation of the quantum state, thus potentially scaling very favorably to a larger number of qubits. The second requires the implementation of a physical model to map the Hamiltonian parameters to a measurement record, which we implement using an integrator of the physical model with a recurrent neural network to provide a model-free correction at every time step to account for small effects not captured by the physical model. We test our construction on a system of two qubits and demonstrate accurate prediction of multiple physical parameters in both the supervised context and the unsupervised context. We demonstrate that the model benefits from larger training sets, establishing that it is “learning,” and we show robustness regarding errors in the assumed physical model by achieving accurate parameter estimation in the presence of unanticipated single-particle relaxation. 
    more » « less
  3. Abstract Over the past decade, the usefulness of quantum annealing hardware for combinatorial optimization has been the subject of much debate. Thus far, experimental benchmarking studies have indicated that quantum annealing hardware does not provide an irrefutable performance gain over state-of-the-art optimization methods. However, as this hardware continues to evolve, each new iteration brings improved performance and warrants further benchmarking. To that end, this work conducts an optimization performance assessment of D-Wave Systems’Advantage Performance Updatecomputer, which can natively solve sparse unconstrained quadratic optimization problems with over 5,000 binary decision variables and 40,000 quadratic terms. We demonstrate that classes of contrived problems exist where this quantum annealer can provide run time benefits over a collection of established classical solution methods that represent the current state-of-the-art for benchmarking quantum annealing hardware. Although this workdoes notpresent strong evidence of an irrefutable performance benefit for this emerging optimization technology, it does exhibit encouraging progress, signaling the potential impacts on practical optimization tasks in the future. 
    more » « less
  4. A large body of work has demonstrated that parameterized artificial neural networks (ANNs) can efficiently describe ground states of numerous interesting quantum many-body Hamiltonians. However, the standard variational algorithms used to update or train the ANN parameters can get trapped in local minima, especially for frustrated systems and even if the representation is sufficiently expressive. We propose a parallel tempering method that facilitates escape from such local minima. This methods involves training multiple ANNs independently, with each simulation governed by a Hamiltonian with a different driver strength, in analogy to quantum parallel tempering, and it incorporates an update step into the training that allows for the exchange of neighboring ANN configurations. We study instances from two classes of Hamiltonians to demonstrate the utility of our approach using Restricted Boltzmann Machines as our parameterized ANN. The first instance is based on a permutation-invariant Hamiltonian whose landscape stymies the standard training algorithm by drawing it increasingly to a false local minimum. The second instance is four hydrogen atoms arranged in a rectangle, which is an instance of the second quantized electronic structure Hamiltonian discretized using Gaussian basis functions. We study this problem in a minimal basis set, which exhibits false minima that can trap the standard variational algorithm despite the problem’s small size. We show that augmenting the training with quantum parallel tempering becomes useful to finding good approximations to the ground states of these problem instances. 
    more » « less
  5. Abstract Quantum annealing (QA) is a continuous-time heuristic quantum algorithm for solving or approximately solving classical optimization problems. The algorithm uses a schedule to interpolate between a driver Hamiltonian with an easy-to-prepare ground state and a problem Hamiltonian whose ground state encodes solutions to an optimization problem. The standard implementation relies on the evolution being adiabatic: keeping the system in the instantaneous ground state with high probability and requiring a time scale inversely related to the minimum energy gap between the instantaneous ground and excited states. However, adiabatic evolution can lead to evolution times that scale exponentially with the system size, even for computationally simple problems. Here, we study whether non-adiabatic evolutions with optimized annealing schedules can bypass this exponential slowdown for one such class of problems called the frustrated ring model. For sufficiently optimized annealing schedules and system sizes of up to 39 qubits, we provide numerical evidence that we can avoid the exponential slowdown. Our work highlights the potential of highly-controllable QA to circumvent bottlenecks associated with the standard implementation of QA. 
    more » « less